

Workshop

Cairo, Egypt 8 January 2009

Laboratory Chemical Safety: Concepts of Anticipation, Recognition, Evaluation and Control

Douglas B. Walters, Ph.D., CSP, CCHO

Environmental & Chemical Safety Educational Institute

Fundamentals of

Laboratory Chemical Safety

References

"Safety in Academic Laboratories, Vol.1 & 2," American Chemical Society, Washington DC, 2003, handouts and available online:

http://membership.acs.org/c/ccs/publications.htm

"Prudent Practices in the Laboratory: Handling and Disposal of Chemicals," National Academy Press, 1995, available online: http://www.nap.edu/catalog.php?record_id=4911

"Hazardous Chemicals: Control and Regulation in the European Market," H.F.Bender and P. Eisenbarth, Wiley-VCH, Weinheim Germany, 2007

Purpose of Laboratory Chemical Safety

- Protect the worker
- Safeguard the environment
- Comply with regulations

Support the conduct of the studies

Laboratory Chemical Safety

Safety---freedom from danger, injury, or property damage

Hazard---the potential to harm

We want to avoid this.

Risk---the probability that harm will result

Laboratory Chemical Safety

Are all agents dangerous?

or

Is it their *improper* use that makes them dangerous?

Degree of hazard depends on

- Chemical / physical properties
- Route of entry
- Dosage or airborne concentration
- Exposure duration or frequency
- Environmental conditions
- Controls

Chemical Laboratory Hazards

Chemical hazards
 dusts, fumes, mists, vapors, gases

- Ergonomic hazards
 repetitive motion (pipetting), lifting, work areas
 (computers, instruments)
- Biological hazards
 pathogens, blood or body fluids

Chemical Laboratory Safety

Based on Industrial Hygiene Principles

- Anticipation
- Recognition
- Evaluation
- Control

chemical hazards physical hazards ergonomic hazards biological hazards

Anticipate

Potential problems and concerns

- Design a safe experiment first—
- -Don't just design an experiment!

Anticipation

Plan Experiment in Advance

- Outline proposed experiment
 - What chemicals? How much?
 - What equipment?
- Acquire safety information
 - MSDS (Material Safety Data Sheet)
 - REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals)
 - ICSCs (International Chemical Safety Cards)
 - Reference textbooks
- Consult with Safety Office?

Hazard Recognition & Evaluation

- What are the anticipated risks?
 - Are the equipment & facilities adequate?
 - Is special equipment needed?
 - Are staff properly and sufficiently trained?
 - Who will do the experiment?
 - What kind of training do they need?
 - Can the experiment go wrong?
 - · What would go wrong?
 - Is there a plan for this?

Hazard Evaluation

- What are the potential or actual agents/exposures?
- When and where does the exposure occur?
- Which workers are exposed and how does the exposure occur?
- What is the evidence of exposure?
- What control measures are present, available, and effective?

Control

How are the risks controlled?

- Administrative controls
- Engineering controls
 - enclosure / isolation
 - ventilation / hoods
- Personal Protective Equipment (PPE)
- Emergency Plan

Control Objectives

□Maximize Containment

☐ Minimize Contamination

□ Redundancy is the Key

Exposure Control

Recognition

☐ Types of lab hazards

Chemical toxicity
Fire / explosion
Physical hazards
Biohazards
Radiation
Special substances

Types of Hazards in Chemical Laboratories

Douglas B. Walters, Ph.D., CSP, CCHO

Environmental & Chemical Safety Educational Institute

Chemical Toxicity

Acute (short term, poisons, asthmagens) cyanide strychnine

Chronic (long term, carcinogens, reproductive)

vinyl chloride (liver cancer)
asbestos (mesotheloma, lung cancer)
thalidomide (developmental birth defects)

Chemical Toxicity

- Toxicity depends on
 - concentration (dose)
 - frequency
 - duration
 - route of exposure

"Dose makes the poison.

All substances have the potential to harm."
Paracelsus ~1500 AD

300 mg aspirin = safe 3000 mg aspirin = toxic

Particularly Hazardous Substances

□ Chemical Carcinogens

□ Reproductive & Developmental Toxins

□ Highly Toxic Chemicals

Routes of Exposure

Fire and Explosion Hazards

- Flammable solvents
- Pyrophorics
- Spontaneous combustion

Physical and Ergonomic Hazards

- Moving unguarded parts, pinches
 - vacuum pump belts
- Broken glassware and sharps, cuts
- Pressure apparatus
- Vacuum containers
- Dewar flasks
- Cryogenics
- High voltage equipment
- Computer workstations
- Slips, trips & falls

THIS MACHINE HAS NO BRAIN USE YOUR OWN

BioHazards

☐ Blood borne pathogens

AIDS, HIV, Hepatitis, clinical chemistry labs

☐ Recombinant DNA
Genetic engineering, cloning

☐ Work with animals

Zoonosis, diseases from animals

Radiation Hazards

- Ionizing Radiation
 alpha , beta , gamma , X-rays, neutrons
- Radioactive isotopes

 tritium (H-3), carbon (C-14), sulfur (S-35),
 phosphorus (P-32/33), iodine (I-135)

Radiation Hazards

☐ Non-lonizing RadiationUltraviolet (UV spectrometers)Magnetic (NMR, MRI)

Microwave
(Heart pacemaker hazard)

Lasers
(eye protection required)

Special Chemical Substances

☐ Controlled Substances

regulated drugs, psychotropic (hallucinogenic) substances, heroin

☐ Chemical Surety (Warfare) Agents nerve gas, phosgene, riot control agents

Chemical Lab Safety: Administrative, Operational, and Engineering Controls

Douglas B. Walters, Ph.D., CSP, CCHO

Environmental & Chemical Safety Educational Institute

Evaluation & Control

- ☐ Administrative practices organizational policies
- Operational practices work practices
- ☐ Engineering controls
 Hardware (ventilation,
 barriers)

Administrative Practices: Lab Safety Policies

- Have organizational safety practices
 - Apply to everybody
 - Don't work alone after hours
 - Specify when eye protection & PPE is required
 - Specify operations that require hood use
 - No eating in labs
 - No mouth pipetting
 - No loose long hair or dangling attire
 - Label all chemical containers
- Have a Safety Manual

Administrative Practices: Lab Safety Policies

- Schedule routine, periodic maintenance and inspection of fume hoods
- Schedule routine, periodic maintenance of safety showers and eye wash stations
- Schedule routine, periodic maintenance of fire suppression/fighting equipment
- Post restricted areas with proper signs
 - radiation, biosafety, carcinogen, high voltage, lasers, authorized personnel only, etc.

Operational Practices: Safe Laboratory Procedures

Use hoods properly

- -6" in from sash
- in center of hood
- work with hood sash at 12-18"
- close sash when not in use
- -don't use for storage

Operational Practices: Safe Laboratory Procedures

- use container in a container concept
 - label all containers
 - inform driver of hazards
- provide contact names, phone numbers
 - provide MSDS

Operational Practices: Control of Static

Wire needed unless containers are already bonded together, or fill stem is always in metallic contact with receiving container during transfer

Operational Practices: Safe Laboratory Procedures

Housekeeping

- label all containers
- clean-up spills
- eliminate trip hazards
- proper storage

Engineering Controls:Laboratory Containment Principles

Engineering Controls

- 1. Change the process eliminate the hazard
- 2. Substitution
 use non-hazardous substance instead of hazardous, such as toluene for benzene

4. Ventilation
dilution (general ventilation) - not good
local exhaust ventilation (LEV) - Preferred

Engineering Controls

Local exhaust ventilation Preferred

Dilution / general ventilation not good

Engineering Controls

Laboratory hoods and ventilation are the basis of engineering controls.

But they must be properly: functioning, maintained and used!

Engineering Controls: Local exhaust

Local exhaust ventilation options include:

Snorkels

Vented enclosures

Proper Hood Use

- Locate hood away from potential cross drafts
 - Diffusers, doors, windows, traffic
- Check hood is working properly before starting
- Check for containment
- Avoid clutter
- Do not use for storage
- Sash height at 12-18 "
- Work 6" in from sash
 - and in center

Hood Containment

 Smoke candles and tubes can evaluate hoods

Engineering Controls: Exhaust vents

Hood exhaust should not be blocked or deflected downward, but should exhaust straight up

Engineering Controls: Exhaust vents

Avoid exhaust re-entrainment

Disperse emissions straight upward and downwind!

Engineering Controls:Personal Protective Equipment (PPE)

PPE includes:
eye protection,
gloves,
laboratory coats. etc.,
respirators,
appropriate foot protection

Engineering Controls: Personal Protective Equipment

Eye protection specific to the hazard

Engineering Controls: Personal Protective Equipment

Gloves must be chemical specific

AFETY AND SECURITY TRAINING

Engineering Controls: Foot Protection

Safety shoes with steel toes are not necessary for laboratory work unless there is a serious risk from transporting or handling heavy objects.

however, open toe shoes should NOT be worn in labs

